Blackwater Community School
 Curriculum Map 2015-2016

Fourth Grade Quarter 3

Module 5: Fraction Equivalence, Ordering, and Operations - Part 2, Topics D-H Approximately 25 days - Begin around January $4^{\text {th }}$

In this 45 -day module, students build on their Grade 3 work with unit fractions as they explore fraction equivalence and extend this understanding to mixed numbers. This leads to the comparison of fractions and mixed numbers and the representation of both in a variety of models. Benchmark fractions play an important part in students' ability to generalize and reason about relative fraction and mixed number sizes. Students then have the opportunity to apply what they know to be true for whole number operations to the new concepts of fraction and mixed number operations.

Major Clusters:			4.NF.A - Extend understanding of fraction equivalence and ordering. 4.NF.B - Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.				
Supporting Clusters:			4.OA.C - Generate and analyze patterns. 4.MD.B - Represent and interpret data.				
Vocabulary			Benchmark, common denominator, denominator, line plot, mixed number, numerator				
$\begin{aligned} & \text { ס } \\ & 0 \\ & 3 \\ & \text { D } \end{aligned}$			Arizona's College and Career Ready Standards		Expla	\& Examples	Notes \& Resources
4.0A	B	5	Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself. For example, given the rule "Add 3" and the starting number 1, generate terms in the resulting sequence and observe that the terms appear to alternate between odd and even numbers. Explain informally why the numbers will continue to alternate in this way. (Students work with multiplication and apply it to area.) (Q1, Q3)	terns in d multi terns. N velop flu terns and me process . Studen the patt ample: Pattern	ers o ities terns eratio elated over. diffe ify the	s either repe nd extendin dents to re $r n$ is a sequ tates what terns to find for those fe Feature(s)	Engage NY M5 Lesson 41 enVision Topic 1,2

	$\begin{aligned} & \text { 을 } \\ & \overline{U N} \\ & \text { D } \end{aligned}$	$\begin{aligned} & \text { n } \\ & \stackrel{0}{2} \\ & \frac{2}{2} \\ & \frac{2}{2} \end{aligned}$	Arizona's College and Career Ready Standards	Explanations \& Examples			Notes \& Resources
			4.MP.2. Reason abstractly and quantitatively. 4.MP.4. Model with mathematics. 4.MP.5. Use appropriate tools strategically. 4.MP.7. Look for and make use of structure.	$3,8,13,18,23$, $28, \ldots$ $5,10,15,20 \ldots$ After students have need to generate a Example: - Rule: Starting each numb Students w numbers ar numbers ar beyond 6 n in the differ etc.)	Start with 3, add 5 Start with 5, add 5 ntified rules erical or sh 1, create a 3. Stop wh $1,3,9,27,81$ d and that ch 9. Some ers. Anothe es of the n	The numbers alternately end with a 3 or 8 The numbers are multiples of 5 and end with either 0 or 5. The numbers that end with 5 are products of 5 and an odd number. The numbers that end in 0 are products of 5 and an even number. d features from patterns, they pattern from a given rule. ttern that starts at 1 and multi you have 6 numbers. 243. Students notice that all th sums of the digits of the 2 digit dents might investigate this eature to investigate is the pat bers $(3-1=2,9-3=6,27-9=$	
4.NF	A	1	Explain why a fraction a / b is equivalent to a fraction ($n \times a) /(n \times b)$ by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions. 4.MP.2. Reason abstractly and quantitatively. 4.MP.4. Model with mathematics.	This standard exten denominators (5, 10 Students can use vis fractions. All the models show that $1 / 2$ and $2 / 4$ are equivalent. When a model, the number Students will begin fractions in the way	he work in , and 100). models or a The secon uivalent fra izontal line qual parts otice conne h the parts	d grade by using additional lets to generate equivalent model shows $2 / 4$ but also show ons because their areas are drawn through the center of the bles and size of the parts is hal ons between the models and wholes are counted and begin	Engage NY M5 Lessons 7-11, 16- 28 enVision Topic 11

	$\begin{aligned} & \stackrel{\cap}{=} \\ & \frac{\pi}{4} \\ & \stackrel{N}{7} \end{aligned}$		Arizona's College and Career Ready Standards	Explanations \& Examples	Notes \& Resources
			4.MP.7. Look for and make use of structure. 4.MP.8. Look for and express regularity in repeated reasoning.	generate a rule for writing equivalent fractions. $1 / 2 \times 2 / 2=2 / 4$. $\frac{1}{2}$ $\frac{2}{4}=\frac{2 \times 1}{2 \times 2}$ $3=3 \times 1$ $6 \frac{3 \times 1}{3 \times 2}$ $\frac{4}{8}=\frac{4 \times 1}{4 \times 2}$ Technology Connection: http://illuminations.nctm.org/activitydetail.aspx?id=80	
4.NF	A	2	Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as $1 / 2$. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model. 4.MP.2. Reason abstractly and quantitatively. 4.MP.4. Model with mathematics. 4.MP.5. Use appropriate tools strategically. 4.MP.7. Look for and make use of structure.	Benchmark fractions include common fractions between 0 and 1 such as halves, thirds, fourths, fifths, sixths, eighths, tenths, twelfths, and hundredths. Fractions can be compared using benchmarks, common denominators, or common numerators. Symbols used to describe comparisons include <, $>,=$. - Fractions may be compared using $\frac{1}{2}$ as a benchmark. Possible student thinking by using benchmarks: o $\frac{1}{8}$ is smaller than $\frac{1}{2}$ because when 1 whole is cut into 8 pieces, the pieces are much smaller than when 1 whole is cut into 2 pieces.	Engage NY M5 Lessons 12-15, 22- 28 enVision Topic 11

	$\begin{aligned} & \text { 읃 } \\ & \bar{n} \\ & \stackrel{\mathbb{D}}{7} \end{aligned}$		Arizona's College and Career Ready Standards	Explanations \& Examples	Notes \& Resources
				Possible student thinking by creating common denominators: o $\frac{5}{6}>\frac{1}{2}$ because $\frac{3}{6}=\frac{1}{2}$ and $\frac{5}{6}>\frac{3}{6}$ Fractions with common denominators may be compared using the numerators as a guide. o $\frac{2}{6}<\frac{3}{6}<\frac{5}{6}$ Fractions with common numerators may be compared and ordered using the denominators as a guide. o $\quad \frac{3}{10}<\frac{3}{8}<\frac{3}{4}$	
4.NF	B	$\begin{gathered} 3 \\ \text { abc } \\ d \end{gathered}$	Understand a fraction a / b with $a>1$ as a sum of fractions $1 / b$. a. Understand addition and subtraction of fractions as joining and separating parts referring to the same whole. b. Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. Examples: $3 / 8=1 / 8+1 / 8+1 / 8$; $\begin{aligned} & 3 / 8=1 / 8+2 / 8 ; 21 / 8=1+1+1 / 8=8 / 8+8 / 8 \\ & +1 / 8 \end{aligned}$ c. Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between	A fraction with a numerator of one is called a unit fraction. When students investigate fractions other than unit fractions, such as $2 / 3$, they should be able to decompose the non-unit fraction into a combination of several unit fractions. Examples: Fraction Example 1: - $2 / 3=1 / 3+1 / 3$ Being able to visualize this decomposition into unit fractions helps students when adding or subtracting fractions. Students need multiple opportunities to work with mixed numbers and be able to decompose them in more than one way. Students may use visual models to help develop this understanding. Fraction Example 2: - $11 / 4-3 / 4=\square$ $4 / 4+1 / 4=5 / 4$ $5 / 4-3 / 4=2 / 4$ or $1 / 2$ Word Problem Example 1: Mary and Lacey decide to share a pizza. Mary ate $3 / 6$ and Lacey ate $2 / 6$ of the pizza. How much of the pizza did the girls eat together?	Engage NY M5 Lessons 1-11, 16- 28 enVision Topic 12

8 0 3 0 0 0	$\begin{aligned} & \frac{\cap}{=} \\ & \overline{4} \\ & \stackrel{\rightharpoonup}{\sim} \end{aligned}$		Arizona's College and Career Ready Standards	Explanations \& Examples	Notes \& Resources
			addition and subtraction. d. Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem. 4.MP.1. Make sense of problems and persevere in solving them. 4.MP.2. Reason abstractly and quantitatively. 4.MP.4. Model with mathematics. 4.MP.5. Use appropriate tools strategically. 4.MP.6. Attend to precision. 4.MP.7. Look for and make use of structure. 4.MP.8. Look for and express regularity in repeated reasoning.	Solution: The amount of pizza Mary ate can be thought of a 3/6 or $1 / 6$ and $1 / 6$ and $1 / 6$. The amount of pizza Lacey ate can be thought of a $1 / 6$ and $1 / 6$. The total amount of pizza they ate is $1 / 6+1 / 6+1 / 6+1 / 6+1 / 6$ or $5 / 6$ of the whole pizza. A separate algorithm for mixed numbers in addition and subtraction is not necessary. Students will tend to add or subtract the whole numbers first and then work with the fractions using the same strategies they have applied to problems that contained only fractions. Word Problem Example 2: - Susan and Maria need $83 / 8$ feet of ribbon to package gift baskets. Susan has $31 / 8$ feet of ribbon and Maria has $53 / 8$ feet of ribbon. How much ribbon do they have altogether? Will it be enough to complete the project? Explain why or why not. The student thinks: I can add the ribbon Susan has to the ribbon Maria has to find out how much ribbon they have altogether. Susan has $31 / 8$ feet of ribbon and Maria has $53 / 8$ feet of ribbon. I can write this as $31 / 8$ $+53 / 8$. I know they have 8 feet of ribbon by adding the 3 and 5 . They also have $1 / 8$ and $3 / 8$ which makes a total of $4 / 8$ more. Altogether they have $84 / 8$ feet of ribbon. $84 / 8$ is larger than $83 / 8$ so they will have enough ribbon to complete the project. They will even have a little extra ribbon left, $1 / 8$ foot. Additional Example: - Trevor has 4 1/8 pizzas left over from his soccer party. After giving some pizza to his friend, he has $24 / 8$ of a pizza left. How much pizza did Trevor give to his friend? Solution: Trevor had $41 / 8$ pizzas to start. This is $33 / 8$ of a pizza. The $x^{\prime} s$ show the pizza he has left which is $24 / 8$ pizzas or $20 / 8$ pizzas. The shaded rectangles without the x 's are the pizza he gave to his friend which is $13 / 8$ or $15 / 8$ pizzas.	

$\begin{aligned} & \text { 응 } \\ & \frac{3}{3} \\ & \text { ㄹ. } \end{aligned}$	$\begin{aligned} & \stackrel{\cap}{=} \\ & \stackrel{4}{0} \\ & \stackrel{\rightharpoonup}{\sim} \end{aligned}$		Arizona's College and Career Ready Standards	Explanations \& Examples	Notes \& Resources
			4.MP.1. Make sense of problems and persevere in solving them. 4.MP.2. Reason abstractly and quantitatively. 4.MP.4. Model with mathematics. 4.MP.5. Use appropriate tools strategically. 4.MP.6. Attend to precision. 4.MP.7. Look for and make use of structure. 4.MP.8. Look for and express regularity in repeated reasoning.	$3 / 8+3 / 8+3 / 8+3 / 8+3 / 8=15 / 8=17 / 8$	
4.MD	B	4	Make a line plot to display a data set of measurements in fractions of a unit (1/2, $1 / 4,1 / 8)$. Solve problems involving addition and subtraction of fractions by using information presented in line plots. For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection. 4.MP.2. Reason abstractly and quantitatively. 4.MP.4. Model with mathematics. 4.MP.5. Use appropriate tools strategically. 4.MP.6. Attend to precision. 4.MP.7. Look for and make use of structure.	• Ten students in Room 31 measured their pencils at the end of the day. They recorded their results on the line plot below. Possible questions: 0 What is the difference in length from the longest to the o shortest pencil? 0 If you were to line up all the pencils, what would the total length be? If the $51 / 8^{\prime \prime}$ pencils are placed end to end, what would be their total length?	Engage NY M5 Lessons 22-28, 35- 40 enVision Not Covered

$\begin{aligned} & \text { 응 } \\ & 0 \\ & 3 \\ & \frac{0}{5} . \end{aligned}$			Arizona's College and Career Ready Standards	Explanations \& Examples	Notes \& Resources
This 20-day module gives students their first opportunity to explore decimal numbers via their relationship to decimal fractions, expressing a given quantity in both fraction and decimal forms. Utilizing the understanding of fractions developed throughout Unit 5, students apply the same reasoning to decimal numbers, building a solid foundation for Grade 5 work with decimal operations.					
Major Clusters:			4.NF.C - Understand decimal notation for fractions, and compare decimal fractions.		
Supporting Clusters:			4.MD.A - Solve problems involving measurement and conversion of measurements from a larger unit to a small unit.		
Vocabulary			Decimal number, decimal expanded form, decimal fraction, decimal point, fraction expanded form, hundredth, tenth		
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0.0 \\ & \text { 0. } \end{aligned}$	읃 ¢ d d	n O O O 2	Arizona's College and Career Ready Standards	Explanations \& Examples	Notes \& Resources
4.NF	C	5	Express a fraction with denominator 10 as an equivalent fraction with denominator 100 , and use this technique to add two fractions with respective denominators 10 and 100. For example, express $3 / 10$ as $30 / 100$, and add $3 / 10+4 / 100=34 / 100$. (Students who can generate equivalent fractions can develop strategies for adding fractions with unlike denominators in general. But addition and subtraction with unlike denominators in general is not a requirement at this grade.) 4.MP.2. Reason abstractly and quantitatively. 4.MP.4. Model with mathematics. 4.MP.5. Use appropriate tools strategically.	Students can use base ten blocks, graph paper, and other place value models to explore the relationship between fractions with denominators of 10 and denominators of 100. Students may represent $3 / 10$ with 3 longs and may also write the fraction as $30 / 100$ with the whole in this case being the flat (the flat represents one hundred units with each unit equal to one hundredth). Students begin to make connections to the place value chart as shown in 4.NF.6. This work in fourth grade lays the foundation for performing operations with decimal numbers in fifth grade.	Engage NY M6 Lessons 4-8, 12-16 enVision Topic 13

$\begin{aligned} & \text { 응 } \\ & \frac{3}{3} \\ & \frac{015}{5} \end{aligned}$	읃 ¢ ¢ 1		Arizona's College and Career Ready Standards	Explanations \& Examples						Notes \& Resources
			4.MP.7. Look for and make use of structure.							
4.NF	C	6	Use decimal notation for fractions with denominators 10 or 100. For example, rewrite 0.62 as $62 / 100$; describe a length as 0.62 meters; locate 0.62 on a number line diagram. 4.MP.2. Reason abstractly and quantitatively. 4.MP.4. Model with mathematics. 4.MP.5. Use appropriate tools strategically. 4.MP.7. Look for and make use of structure.	Students use the representations explored in 4.NF. 5 to understand $32 / 100$ can be expanded to $3 / 10$ and $2 / 100$. Students represent values such as 0.32 or $32 / 100$ on a number line. $32 / 100$ is more than $30 / 100$ (or $3 / 10$) and less than $40 / 100$ (or $4 / 10$). It is closer to $30 / 100$ so it would be placed on the number line near that value.						Engage NY M6 Lessons 1-8, 12-16 enVision Topic 13
4.NF	C	7	Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols >, $=$, or $<$, and justify the conclusions, e.g., by using a visual model. 4.MP.2. Reason abstractly and quantitatively. 4.MP.4. Model with mathematics. 4.MP.5. Use appropriate tools strategically.	Students build area and other models to compare decimals. Through these experiences and their work with fraction models, they build the understanding that comparisons between decimals or fractions are only valid when the whole is the same for both cases. - Each of the models below shows $3 / 10$ but the whole on the right is much bigger than the whole on the left. They are both $3 / 10$ but the model on the right is a much larger quantity than the model on the left. When the wholes are the same, the decimals or fractions can be						Engage NY M6 Lessons 4-11 enVision Topic 13

	$\begin{aligned} & \cap \\ & \underset{\bar{U}}{1} \\ & \text { D } \end{aligned}$		Arizona's College and Career Ready Standards	Explanations \& Examples	Notes \& Resources
			4.MP.7. Look for and make use of structure.	compared. Example: - Draw a model to show that $0.3<0.5$. (Students would sketch two models of approximately the same size to show the area that represents three-tenths is smaller than the area that represents five-tenths.	
4.MD	A	2	Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale. 4.MP.1. Make sense of problems and persevere in solving them. 4.MP.2. Reason abstractly and quantitatively. 4.MP.4. Model with mathematics. 4.MP.5. Use appropriate tools strategically. 4.MP.6. Attend to precision.	- Addition: Miguel had 1 dollar bill, 2 dimes, and 7 pennies. John had 2 dollar bills, 3 quarters, and 9 pennies. How much money did the two boys have in all? - Subtraction: A pound of apples costs \$1.20. Rachel bought a pound and a half of apples. If she gave the clerk a $\$ 5.00$ bill, how much change will she get back? - Multiplication: A pen costs $\$ 2.29$. A calculator costs 3 times as much as a pen. How much do a pen and a calculator cost together? - Number line diagrams that feature a measurement scale can represent measurement quantities. Examples include: ruler, diagram marking off distance along a road with cities at various points, a timetable showing hours throughout the day, or a volume measure on the side of a container.	Engage NY M6 Lessons 9-12, 15- 16 Also addressed in Module 7 enVision Topic 13,14,15

